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Denote cumulative distribution function Q(x) as
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Q(zx) = e 2" dt
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Since var(f) < var(f), we can get Q(—=— ) < Q( ). Thus,
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Exercise 2.11
We need 0 = g(z[0]) to be unbiased, i.e. E[f] = 6. Thus,
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9([0]) £ (x[0])dz[0] = / " g(x[0])0dz(0] = 0

/0é g(u)du =1

Assume a function g can be found, then for any 6, < 6;, we have
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We can obtain
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/091 g(w)du =1 /O g(w)du = 1

This means f du = 0, for any 0y < 0;. Obviously, g(u) should be 0 for any u > 0.
Hence, it doesn t exit.
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Then, we have
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For 6 > 0, we obtain
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Computing CRLB, we have
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For 6 < 0, we obtain
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Computing CRLB, we have
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It agrees with the results given.
Exercise 3.11
Since I(8) is positive definite, we can get a > 0, ¢ > 0 and ac—b* > 0 by det(I(0)) > 0.

Besides, we can obtain

[I (0)]11 = ac — b2 - a — b2/C - a N [1(9)]11

It means the CRLB will increase when we estimate additional parameters. Equality holds
when b = 0, because in this case the Fisher information matrix is decoupled, i.e. the
additional parameter won’t affect our desired parameter.

Exercise 3.12

Note that \/I-1(0) = (1/1(8))~!, we have

(7T(0)e.) - (T (B)e.) = [1O)]u- [1(0)]u > (o] VIB) /T (B)e) =1

Thus,

The new bound will be achieved when an efficient estimation exits.
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Using the result in (3.33) of Page 49 and letting s[n; A] = i;(l) Apnk, we can get
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